Time-Sequential Self-Organization of Hierarchical Neural Networks
نویسندگان
چکیده
Self-organization of multi-layered networks can be realized by time-sequential organization of successive neural layers. Lateral inhibition operating in the surround of firing cells in each layer provides for unsupervised capture of excitation patterns presented by the previous layer. By presenting patterns of increasing complexity, in coordination with network self-organization, higher levels of the hierarchy capture concepts implicit in the pattern set.
منابع مشابه
Sustained Activity in Hierarchical Modular Neural Networks: Self-Organized Criticality and Oscillations
Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and fi...
متن کاملArtificial Neural Networks for Compression of Digital Images: a Review Venkata
Digital images require large amounts of memory for storage. Thus, the transmission of an image from one computer to another can be very time consuming. By using data compression techniques, it is possible to remove some of the redundant information contained in images, requiring less storage space and less time to transmit. Artificial Neural networks can be used for the purpose of image compres...
متن کاملHierarchical self-organization of minicolumnar receptive fields
We study self-organization of receptive fields (RFs) of cortical minicolumns. Input driven self-organization is induced by Hebbian synaptic plasticity of afferent fibers to model minicolumns based on spiking neurons and background oscillations. If input in the form of spike patterns is presented during learning, the RFs of minicolumns hierarchically specialize to increasingly small groups of si...
متن کاملA Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملDynamic Intrusion Detection Using Self-Organizing Maps
A system is described for applying hierarchical unsupervised neural networks (self organizing feature maps) to the intruder detection problem. Specific emphasis is given to the representation of time and the incremental development of a hierarchy. Preliminary results are given for the DARPA 1998 Intrusion Detection Problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1987